
INCORPORATION d'IODE 131 par INGESTION

Quantité d'iode 131 qui délivre une dose efficace de 10 µSv (seuil en deçà duquel les autorités considèrent que le risque est négligeable)

Le becquerel (noté Bq) est l'unité légale de mesure de l'activité (ou radioactivité).

1 Bq = 1 désintégration par seconde

• La dose est fonction de l'âge et de la quantité d'iode radioactif ingérée

Si de l'eau présente une activité de **80 becquerels par litr**e (Bq/l), cela signifie qu'à chaque seconde, dans un litre d'eau, 80 atomes d'iode 131 se désintègrent en émettent des rayonnements ionisants. (NB: il s'agit d'un exemple théorique sans lien avec la contamination induite par les rejets de Fukushima Daiichi).

Si une personne ingère **70 cl** de cette eau, elle ingère une activité égale à **56 Bq** (80 Bq x 0,7 l). Si le consommateur est un **enfant en bas âge** (70 cl d'eau utilisés pour la préparation des biberons par exemple), l'ingestion de ces 56 Bq suffira à lui délivrer, en une journée, une dose de **10 \muSv**. Or, les autorités considèrent qu'au-delà d'une dose de 10 μ Sv par an, le risque radiologique est acceptable mais n'est plus négligeable : de 10 μ Sv/an jusqu'à la limite de dose de 1 000 μ Sv/an, les expositions doivent être abaissées autant qu'il est « raisonnablement » possible de le faire. Au-delà de 1 000 μ Sv/an (soit 1 mSv/an), le risque radiologique (notamment cancérigène) est considéré comme trop élevé pour être accepté ¹.

1. En tout cas en fonctionnement normal. En situation accidentelle, les autorités considèrent qu'il faut tenir compte des risques et des coûts associés aux contre-mesures (mesures de protection nécessaires à la diminution des expositions, type évacuation, administration d'iode stable, interdiction de vente d'aliments contaminés, etc) et que la population peut donc être soumise à des niveaux de doses, et de risque, supérieurs aux niveaux jugés

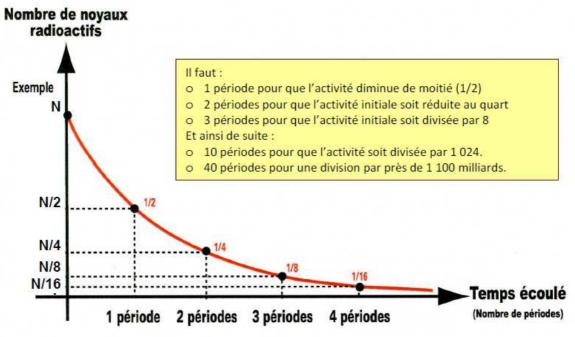
Si la contamination perdure et que l'enfant ingère, **3 semaines** durant, une activité quotidienne de 56 Bq, la quantité ingérée s'élèvera à 56 x 21 = **1 176 Bq** soit une dose de **212 \muSv** (soit, en 3 semaines, le double de la limite de dose annuelle fixée pour l'eau potable : **100 \muSv/an**).

Si la même activité -1176 Bq - est ingérée par un **adulte**, la dose ne sera que de **26 µSv**; Si l'adulte consomme cette même eau mais sur la base de **2 litres par jour** (et non plus de 70 cl), la dose qu'il recevra s'élèvera à **74 µSv**, ce qui reste inférieur à la dose reçue par un enfant de 2 ans ou moins avec une consommation d'eau 3 fois inférieure.

Ceci illustre la nécessité de d'établir des mesures de protection spécifiques pour les enfants. Or ce n'est pas le cas. Les normes établies pour les eaux potables sont définies pour les adultes et ne les protègent pas suffisamment.

Voir site CRIIRAD / actualités 2010 / Dossier CRIIRAD : Les normes de radioactivité des eaux potables

• L'activité de l'iode 131 diminue dans le temps (sauf en cas de nouveaux apports)


Il faut toutefois tenir compte du fait que la **période radioactive** de l'iode 131 est de **8 jours** : cela signifie qu'en 8 jours (soit 1 période) son activité initiale est divisée par 2 (divisée par 4 en 2 périodes, soit 16 jours ; divisée par 8 en 3 périodes, soit 24 jours ; divisée par 16 en 32 jours, etc.)

Si l'on considère une citerne dans laquelle est recueillie l'eau de pluie, la décroissance de l'activité de l'iode 131 n'est effective que dans la mesure où il n'y a pas de nouveaux apports de produits radioactifs. Dès lors que des masses d'air contaminé continuent d'apporter de l'iode 131 et que la pluie qui ruisselle sur le toit continue d'être collectée, la contamination ne diminue pas forcément, en tout cas pas au rythme de la période radioactive.

Au contraire, dans un premier temps, le taux de radioactivité augmente. Schématiquement, lorsque les apports d'atomes radioactifs et leur disparition par désintégration s'équilibrent, les niveaux de contamination se stabilisent. Ce n'est qu'en l'absence de tout nouvel apport, que l'activité en iode 131 de l'eau de la citerne sera divisée par moitié tous les 8 jours.

Voir pages ci-après : précisions sur la notion de période radioactive

Précisions sur la notion de « période radioactive »

La période radioactive correspond à une réduction d'un facteur 2. Au terme de 2 périodes, la réduction atteint donc un facteur 4 (la moitié de la moitié) ; au terme de 3 périodes, l'activité est divisée par 8 (la moitié de la moitié de moitié) ; etc.

Le tableau ci-contre indique, pour un nombre croissant de périodes radioactives, le facteur de réduction correspondant.

On invoque souvent, mais à tort, la règle des 10 périodes au terme desquelles une source radioactive ne serait plus dangereuse.

En fait, cette valeur correspond à une division par 1 000 (exactement par 1 024) de l'activité initiale. Le caractère suffisant ou insuffisant de ce taux de réduction dépend en réalité de l'activité initiale de la source.

Si elle est très élevée, il faudra peut-être attendre 30 périodes, soit une division par un peu plus d'un milliard ; 40 périodes, soit une division par plus de 1 000 milliards ; 50 périodes, soit une division de l'activité initiale par plus d'un million de milliards ; ou peut être plus longtemps encore.

Nombre de	Facteur de réduction		
périodes			
0	1 2		
2	4		
3	8		
4	16		
5	32		
6	64		
7	128		
8	256		
9	512		
10	1 024		
11	2 048		
12	4 096		
13	8 192		
14	16 384		
15	32 768		
16	65 536		
17	131 072		
18	262 144		
19	524 288		
20	1 048 576		
21	2 097 152		
22	4 194 304		
23	8 388 608		
24	16 777 216		
25	33 554 432		
26	67 108 864		
27	134 217 728		
28	268 435 456		
29	536 870 912		
30	1 073 741 824		
40	1 099 511 627 776		
50	1 125 899 906 842 620		

Les périodes radioactives sont caractéristiques de chaque radionucléide et extrêmement variables: de moins d'un milliardième de microseconde à des centaines de milliards d'années. Quelques exemples sont présentés dans le tableau ci-dessous.

Radionucléide	Période radioactive	Radionucléide	Période radioactive
rubidium 99	0,06 seconde	strontium 90	28,5 ans
calcium 51	10 secondes	césium 137	30 ans
césium 126	1,64 minutes	nickel 63	100,1 ans
technétium 99m	6 heures	américium 241	432,7 ans
iode 123	12,2 heures	radium 226	1 600 ans
iode 131	8 jours	carbone 14	5 730 ans
béryllium 7	53,29 jours	américium 243	7 380 ans
iode 125	60,14 jours	plutonium 239	24 000 ans
cobalt 58	70,92 jours	thorium 230	75 400 ans
césium 134	2 ans	iode 129	15 700 000 ans
cobalt 60	5,27 ans	uranium 235	703 700 000 ans
tritium	12,33 ans	potassium 40	1 277 000 000 ans
plutonium 241	14,4 ans	uranium 238	4 468 000 000 ans
		thorium 232	14 050 000 000 ans

Pour que l'activité soit divisée par 4, il faudra que 2 périodes se soient écoulées, ce qui correspond à :

- o 12 heures pour le technétium 99m (T = 6 heures)
- o 16 jours pour l'iode 131 (T = 8 jours)
- o 60 ans pour le césium 137 (T = 30 ans)
- o 3 200 ans pour le radium 226 (T = 1 600 ans)
- o Près de 9 milliards d'années pour l'uranium 238 (T = 4,47 milliards d'années).

Pour que l'activité soit divisée par 1 million, il faudra un délai de 30 périodes, ce qui représente :

- o 30 x 6 heures, soit 7,5 jours, pour le technétium 99m
- o 30 x 8 jours, soit 240 jours, pour l'iode 131;
- o 30 x 5,27 ans, soit 158 ans, pour le cobalt 60
- o 30 x 30 ans, soit 900 ans pour le césium 137
- o 30 x 1 600 ans, soit 48 000 ans pour le radium 226