SURVEILLANCE DE LA RADIOACTIVITE ATMOSPHERIQUE BALISE DU PEAGE-DE-ROUSSILLON

Rapport N° 14-27

RAPPORT TRIMESTRIEL JANVIER-FEVRIER-MARS 2014

Document réalisé par le laboratoire de la CRIIRAD pour le Conseil Régional Rhône-Alpes, le Conseil Général de l'Isère et la Communauté de Communes du Pays Roussillonnais

SOMMAIRE

SON	IMAIRE	<u> 2</u>
<u>SYN</u>	THESE	<u> 3</u>
1	RADIOACTIVITE ARTIFICIELLE	<u>5</u>
	1.1 Presentation	5
	1.1.1 Aerosols	6
	1.1.2 IODE	6
	1.2 RESULTATS DES CONTROLES AUTOMATIQUES EN CONTINU	7
	1.2.1 Graphes	
	1.2.2 COMMENTAIRES	10
	1.3 RESULTATS DES CONTROLES DIFFERES PAR SPECTROMETRIE GAMMA	10
	1.3.1 Tableau	
	1.3.2 COMMENTAIRES	10
2	RADIOACTIVITE NATURELLE	11
	2.1 Qu'est-ce que le radon ?	11
	2.2 RADON: RESULTATS DES CONTROLES AUTOMATIQUES EN CONTINU	12
	2.2.1 Janvier 2014	
	2.2.2 Fevrier 2014	13
	2.2.3 Mars 2014	
	2.2.4 COMMENTAIRES	15
ANN	EXE : PRINCIPE DE FONCTIONNEMENT DE LA BALISE	<u> 16</u>
ΙΔΒ	ORATOIRE CRIIRAD	17

Avertissement : toutes les valeurs horaires sont exprimées en heures T.U. (temps universel). Pour obtenir l'heure locale, il faut ajouter 2 heures en été et 1 heure en hiver.

SYNTHESE

1) TECHNIQUE

- Le taux de fonctionnement a été de 99,4%1.
- Une interruption de l'alimentation électrique s'est produite dans le local balise dans la nuit du 1er au 2 février et a conduit à une dysfonctionnement de l'électronique de mesure. Par conséquent, aucune valeur n'est exploitable le 2 février entre 2h et 13h45 TU.
- L'intervention de maintenance périodique, programmée tous les 9 mois par la société Berthold, a été effectuée le 5 février. Au cours de cette intervention (qui comprend notamment un contrôle complet des éléments mécaniques et électriques de la balise, la calibration des détecteurs, le démontage et le nettoyage des éléments sujets à l'empoussièrement du fait du fonctionnement des pompes, le changement des palettes de la pompe 5 m3/h,...), le technicien Berthold a souligné le bon état de fonctionnement de la balise.

2) RESULTATS DES CONTRÔLES

Aucune contamination n'a été détectée pendant le trimestre.

CONTRÔLES AUTOMATIQUES EN CONTINU

Voie alpha direct

Les activités volumiques sont restées inférieures à la limite de détection (1 Bq/m³).

Voie bêta direct

Les activités volumiques sont restées inférieures à la limite de détection (1 Bq/m³).

Voie bêta retardé (temps t + 5j 10h)

Les activités volumiques sont restées inférieures à la limite de détection (0,01 Bq/m³).

Voie iode

Les activités volumiques sont restées inférieures à la limite de détection (1 Bq/m³).

CONTRÔLES DIFFERES PAR SPECTROMETRIE GAMMA

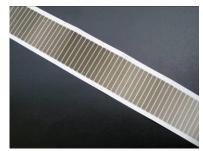
Analyses en laboratoire des filtres

Durant le trimestre, l'activité volumique moyenne en césium 137 est restée inférieure à la limite de détection dans les analyses de filtres mensuels (inférieure à 0,007 mBq/m³ pour chacune des 3 analyses).

¹ A l'exception des prélèvements hebdomadaires pour lesquels les pompes de la balise sont arrêtées pendant 5 à 30 minutes et de la maintenance Berthold qui a eu lieu le 5 février.

Laboratoire de la CRIIRAD

Analyses mensuelles en laboratoire de cartouche hebdomadaire


Les analyses trimestrielles ont été effectuées sur les gaz piégés entre le 14 et le 20 janvier, entre le 11 et le 18 février et entre le 10 et le 17 mars. L'activité volumique moyenne en iode 131 pour les 3 analyses a été systématiquement inférieure à la limite de détection (inférieure à 0,09 mBq/m³).

	EMETTEUR	APPROBATION		
Nom	J.MOTTE - Responsable Service ballises	ISYREN- Entre gold balis		
Date	15/07/14	15/07/14		
Signature	M.3			


1 RADIOACTIVITE ARTIFICIELLE

1.1 Présentation

La balise atmosphérique est constituée d'un dispositif qui aspire l'air à contrôler par un système de pompes et le fait circuler dans plusieurs modules de piégeage. Un **filtre papier** retient les aérosols pour contrôle automatique continu des radionucléides émetteurs alpha et bêta. **Une cartouche à charbon actif** (remplacée chaque semaine par un technicien CRIIRAD) piège les gaz, ce qui permet un contrôle automatique continu de l'activité de l'iode 131 gazeux.

Filtre papier (aérosols)

Cartouche à charbon actif (gaz)

Les filtres et les cartouches peuvent être prélevés et soumis à des analyses complémentaires par spectrométrie gamma au laboratoire² CRIIRAD afin d'identifier et de quantifier précisément la nature et l'activité de chacun des radioéléments émetteurs gamma. En situation courante, sont analysés chaque mois l'intégralité du filtre et l'une des cartouches hebdomadaires. Ces contrôles sont réalisés sans délai en cas de détection de contamination par la balise.

Analyse par spectrométrie gamma

² Le laboratoire de la CRIIRAD est agréé par l'Autorité de Sûreté Nucléaire pour le dosage des émetteurs gamma dans les matrices biologiques et les matrices gaz, ainsi que pour le dosage des gaz halogénés.

1.1.1 Aérosols

Hors situation accidentelle, la radioactivité artificielle de l'air est due principalement :

- au reliquat des radionucléides dispersés par les essais nucléaires effectués dans l'atmosphère principalement dans les années 50/60,
- à la remise en suspension des retombées de Tchernobyl (1986),
- aux installations nucléaires (dont les centrales) qui, en fonctionnement normal, rejettent des éléments radioactifs dans l'atmosphère.

Selon leur mode de désintégration, ces radionucléides sont des émetteurs de rayonnement bêta ou, dans une plus faible proportion, de rayonnements alpha. Dans de nombreux cas, la désintégration s'accompagne de l'émission de rayonnements gamma.

La balise mesure en continu l'activité volumique globale des émetteurs alpha et bêta contenus dans les aérosols. Afin que la surveillance de la contamination artificielle ne soit pas perturbée par les fluctuations des niveaux de radon, gaz radioactif émanant du sol et naturellement présent dans l'atmosphère, le détecteur comptabilise séparément la radioactivité naturelle. De plus, l'activité des radionucléides émetteurs bêta est mesurée une seconde fois, 5 jours (et 10 heures) après la mesure directe de manière à affiner les résultats. En effet, le « bruit de fond » des mesures effectuées en différé est nettement plus bas que celui des mesures directes du fait de la quasi-disparition des descendants à vie courte du radon.

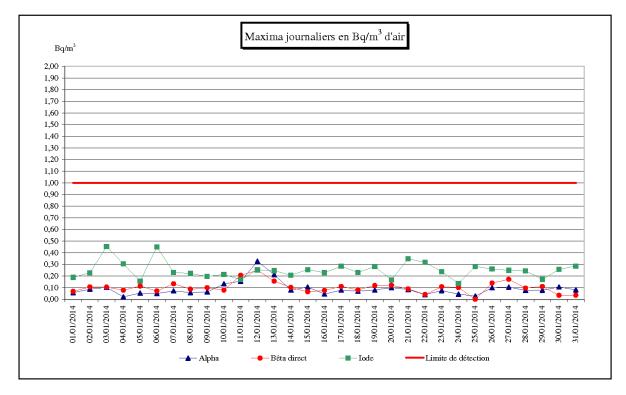
La limite de détection des mesures directes (alpha et bêta) est ainsi de 1 Bq/m³ alors que celle des mesures retardées (bêta) est de 0,01 Bq/m³.

L'analyse du filtre par spectrométrie gamma au laboratoire CRIIRAD permet d'obtenir des niveaux de précision très supérieurs. Pour le césium 137, et pour un comptage d'environ 50 000 secondes, la limite de détection est typiquement inférieure à 0,01 mBq/m³ (soit 0,00001 Bg/m³).

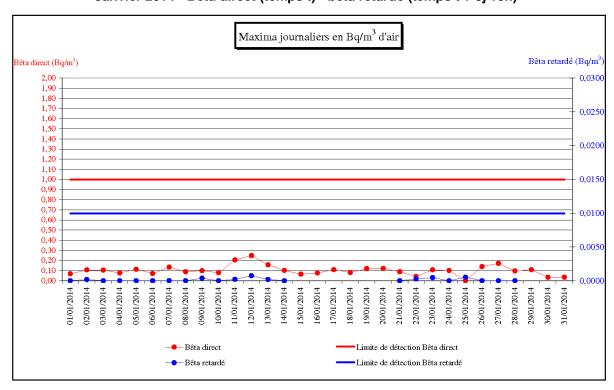
1.1.2 lode

En cas d'incident, de nombreux produits de fission volatils peuvent être rejetés de façon massive dans l'air extérieur. L'expérience montre que l'une de celles qui a l'impact sanitaire le plus important est l'iode 131, un radionucléide émetteur de rayonnements bêta et gamma dont la période physique est de 8 jours.

Afin de mesurer en continu l'activité volumique de l'air en iode 131 gazeux (forme généralement prépondérante), la balise possède un dispositif de piégeage des gaz : une cartouche à charbon actif. Un détecteur spécifique est placé en vis-à-vis. Il s'agit d'un détecteur gamma dont la fenêtre de mesure (291-437 keV) est centrée sur le principal pic de l'iode 131 (364,5 keV). Afin de garantir les capacités de piégeage du dispositif, les cartouches à charbon actif sont prélevées et remplacées toutes les semaines. Chaque mois, l'une des cartouches fait l'objet d'une analyse de contrôle en laboratoire.

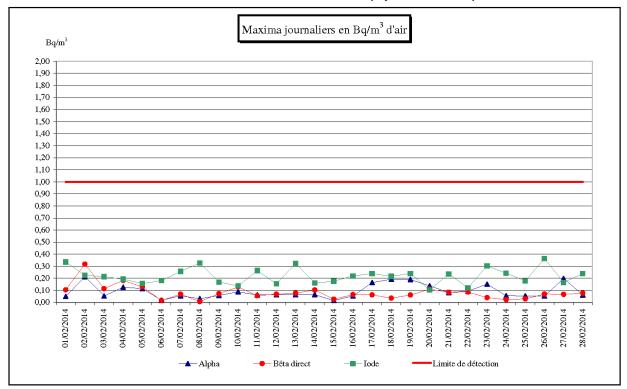

La limite de détection des mesures en direct de l'activité d'iode 131 est de 1 Bq/m³.

L'analyse des cartouches à charbon actif par spectrométrie gamma au laboratoire CRIIRAD, permet d'atteindre, typiquement, une limite de détection inférieure à 0,1 mBq/m³ (pour l'iode 131 et pour un comptage d'environ 50 000 secondes).

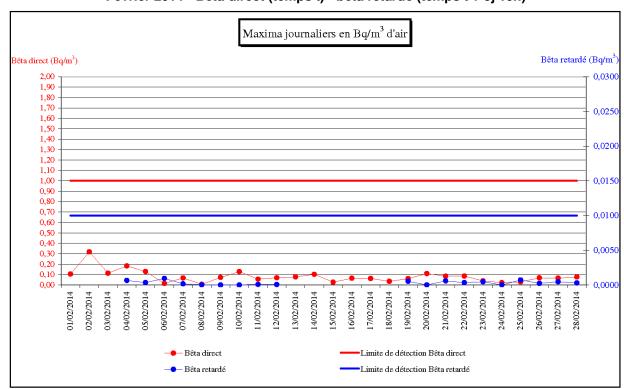

1.2 Résultats des contrôles automatiques en continu

1.2.1 Graphes

Janvier 2014 - Mesures directes (alpha-bêta-iode)

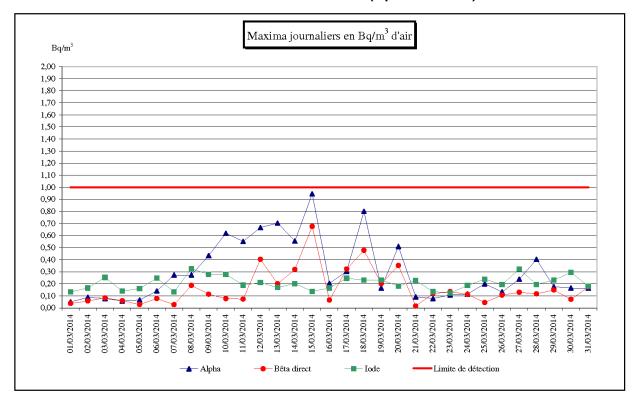


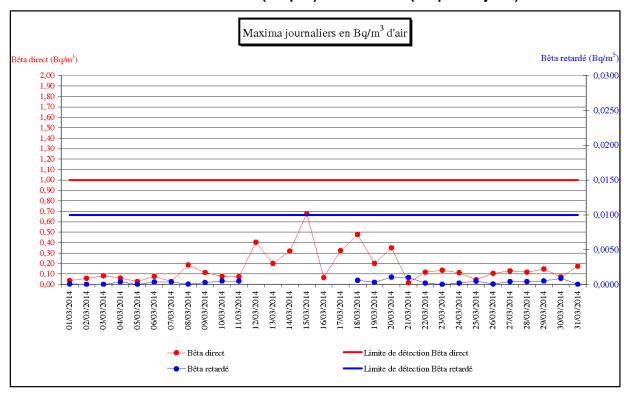
Janvier 2014 - Bêta direct (temps t) - bêta retardé (temps t + 5j 10h)3



³ Les mesures « bêta retardé » ne sont pas effectuées pendant les 5j 10h suivant un prélèvement de filtre. Dans le graphe ci-dessus, les résultats « bêta retardé » réalisés à « t + 5j10h » sont représentés à « t » afin d'être comparés aux résultats « bêta direct » correspondants.

Février 2014 - Mesures directes (alpha-bêta-iode)


Février 2014 - Bêta direct (temps t) - bêta retardé (temps t + 5j 10h)4


⁴ Les mesures « bêta retardé » ne sont pas effectuées pendant les 5j 10h suivant un prélèvement de filtre. Dans le graphe ci-dessus, les résultats « bêta retardé » réalisés à « t + 5j10h » sont représentés à « t » afin d'être comparés aux résultats « bêta direct » correspondants.

-

Mars 2014 - Mesures directes (alpha-bêta-iode)

Mars 2014 - Bêta direct (temps t) - bêta retardé (temps t + 5j 10h)5

⁵ Les mesures « bêta retardé » ne sont pas effectuées pendant les 5j 10h suivant un prélèvement de filtre. Dans le graphe ci-dessus, les résultats « bêta retardé » réalisés à « t + 5j10h » sont représentés à « t » afin d'être comparés aux résultats « bêta direct » correspondants.

1.2.2 Commentaires

Alpha, bêta direct, iode 131

Toutes les valeurs sont restées inférieures à la limite de détection (1 Bq/m³).

Bêta retardé

Aucune mesure n'a été effectuée entre le 15 et le 20 janvier, entre le 13 et le 18 février, entre le 12 et le 17 mars et entre le 29 janvier et le 3 février du fait respectivement du prélèvement de filtre pour analyse les 20 janvier, 18 février et 17 mars et du remplacement du rouleau de filtre le 3 février (cf. note 3 page 7).

Pendant la période de mesure, toutes les valeurs sont restées inférieures à la limite de détection (0,01 Bg/m³).

1.3 Résultats des contrôles différés par spectrométrie gamma

1.3.1 Tableau

Le tableau ci-dessous présente pour le césium 137, le césium 134, l'iode 131 (radioactivité artificielle) et le béryllium 7⁶ (radionucléide naturel) la limite de détection (précédée du signe <) ou l'activité mesurée (suivie de la marge d'incertitude) exprimés en millibecquerels par mètre cube (mBq/m³).

Média	Air écha	ntillonné	Date de	N°	Date	Cs 137	Cs 134	I 131	Be 7
filtrant	du	au	prélèvement	analyse	d'analyse	(mBq/m³)	(mBq/m³)	(mBq/m³)	(mBq/m³)
	30/12/2013	20/01/2014	20/01/14	27 603	20/01/14	< 0,007	< 0,006	< 0,013	1,6 ± 0,3
	15:33	14:42				< 0,007	< 0,000	< 0,013	1,6 ± 0,3
Filtre	20/01/2014	18/02/2014	18/02/14	27 639	18/02/14	< 0,006	< 0,004	< 0,015	1,5 ± 0,3
aérosols	14:47	10:30							1,5 ± 0,5
	18/02/2014	17/03/2014	17/03/14	27 682	18/03/14	< 0,006	< 0,004	< 0,015	2,5 ± 0,4
	10:40	13:50						< 0,004	< 0,013
	14/01/2014	20/01/2014	20/01/14	27 604	21/01/14	_	_	< 0,082	_
Cartouche	09.45 14.40	27 004	27 004 21/01/14	_	-	< 0,002	-		
de charbon	11/02/2014	18/02/2014	18/02/14	27 640	19/02/14	-	-	< 0,085	_
actif	14:04	10:30							_
4500	10/03/2014	17/03/2014	17/03/14	27 681 18	18/03/14	-	-	< 0,078	_
	13:52	13:49	17700/14		10/00/14				-

Légende

Résultats exprimés en millibecquerels par mètre cube d'air (mBq/m³) à la date de mesure.

- ±: marge d'incertitude
- < : limite de détection
- : non mesuré

1.3.2 Commentaires

Aucun radionucléide artificiel émetteur gamma n'a été détecté.

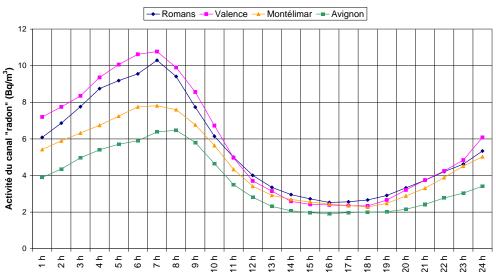
L'activité volumique en béryllium 7 correspond aux niveaux habituellement mesurés.

⁶ L'activité du béryllium 7 (de période physique 53 jours) est donnée à la date de mesure. C'est un produit radioactif naturel qui se forme dans les couches de la haute atmosphère et se dépose de manière assez homogène sur le sol.

2 RADIOACTIVITE NATURELLE

2.1 Qu'est-ce que le radon?

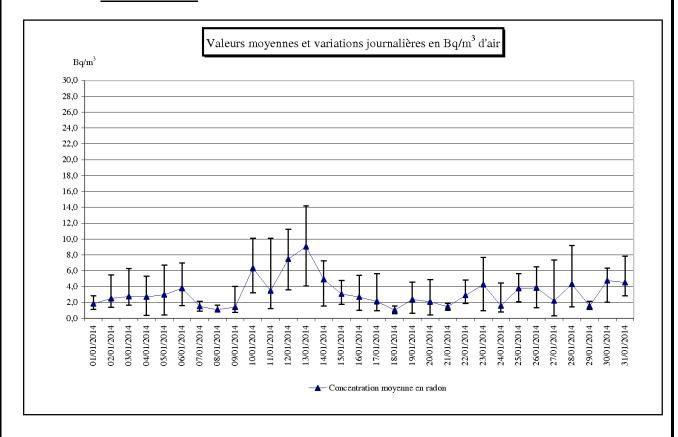
Le radon appartient à la famille des gaz rares (hélium, néon, krypton, ...). Inodore, incolore, sans saveur, il ne réagit pas chimiquement avec les autres éléments. C'est le seul gaz rare naturellement radioactif. Son principal isotope, le radon 222, est produit par la désintégration du radium 226. Il appartient à la chaîne de l'uranium 238, un élément radioactif naturel omniprésent dans l'écorce terrestre, mais à des niveaux variables en fonction de la nature des roches.


Les émanations se produisent en permanence et en tous points du territoire mais elles sont plus élevées dans les zones dont le sol contient des roches riches en uranium (c'est notamment le cas des roches magmatiques, et en particulier des granites). Le Limousin, le Massif Central, la Bretagne et la Corse sont des régions particulièrement concernées par le radon. Dans les secteurs a priori plus pauvres en uranium, le radon produit par des roches plus profondes peut cependant remonter à la surface par le biais des failles.

Présent en concentration élevée dans les sols, le radon se dilue rapidement dans l'air extérieur où les activités volumiques varient généralement de quelques becquerels à quelques dizaines de becquerels par mètre cube d'air, pour un climat tempéré continental. Des niveaux nettement plus élevés peuvent être mesurés à proximité des gisements uranifères et des sites d'extraction de l'uranium. Les concentrations dans l'air ambiant peuvent être alors de plusieurs centaines de becquerels par mètre cube, voire plus.

La concentration du radon dans l'atmosphère varie en fonction de différents paramètres :

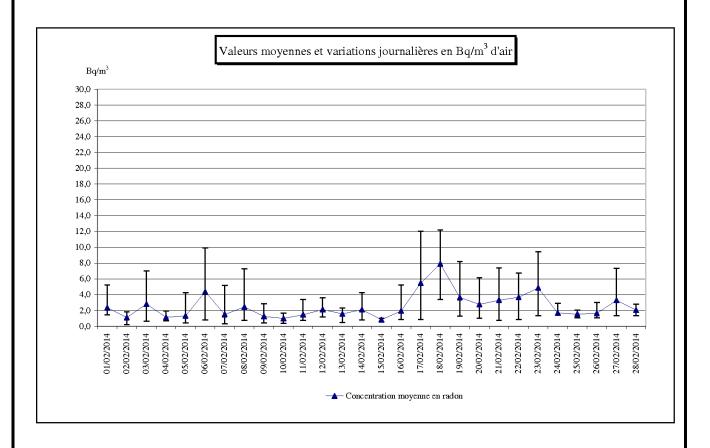
- la teneur du sol en uranium 238 (radon 222) et thorium 232 (radon 220),
- la porosité du sol (qui favorise ou limite l'émanation du radon),
- les conditions météorologiques qui influent à la fois sur l'émission du radon et sur sa dispersion (vent, pression, température, pluie, neige, ...).


A l'échelle d'une journée, on constate typiquement une augmentation des concentrations au cours de la nuit, des niveaux maximums en début de matinée (7h TU), puis une diminution, pour atteindre des valeurs minimales en fin d'après-midi (vers 15-17h TU). Voir ci-dessous l'évolution des concentrations moyennes en radon sur 24 heures pour 4 balises en septembre 2000.

Radon - Activités horaires moyennes mesurées par les balises en septembre 2000

2.2 Radon : résultats des contrôles automatiques en continu

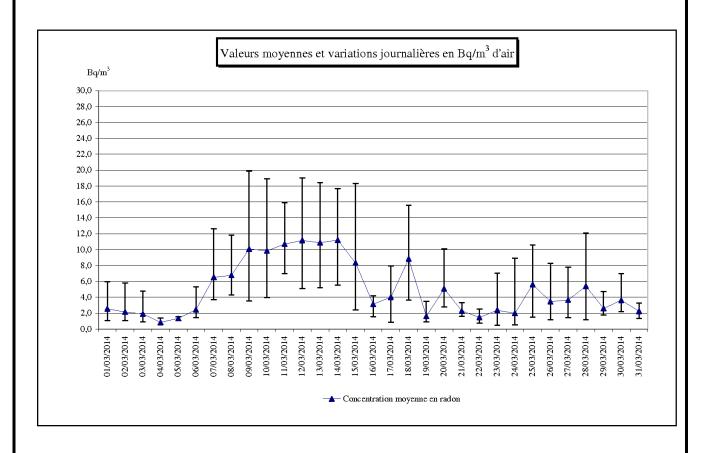
2.2.1 <u>Janvier 2014</u>⁷



Moyenne mensuelle	3,2 Bq/m3
Ecart le plus faible le 08/01/2014	Ecart de 0,8 Bq/m3
Ecart le plus important le 13/01/2014	Ecart de 10,1 Bq/m3
Valeur horaire minimum relevée le 27/01/2014 à 06h00	0,3 Bq/m3
Valeur horaire maximum relevée le 13/01/2014 à 07h00	14,2 Bq/m3

-

⁷ Ce graphe présente pour chaque jour l'activité volumique horaire maximale, l'activité volumique horaire minimale et la moyenne journalière des activités volumiques horaires.


2.2.2 <u>Février 2014</u>⁸

Valeur horaire maximum relevée le 18/02/2014 à 07h00	12,2 Bq/m3
Valeur horaire minimum relevée le 02/02/2014 à 15h09	0,2 Bq/m3
Ecart le plus important le 17/02/2014	Ecart de 11,1 Bq/m3
Ecart le plus faible le 15/02/2014	Ecart de 0,5 Bq/m3
Moyenne mensuelle	2,5 Bq/m3

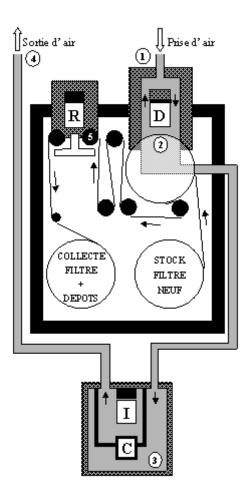
⁸ Ce graphe présente pour chaque jour l'activité volumique horaire maximale, l'activité volumique horaire minimale et la moyenne journalière des activités volumiques horaires.

2.2.3 Mars 20149

Valeur horaire maximum relevée le 09/03/2014 à 08h00	19,9 Bq/m3
Valeur horaire minimum relevée le 23/03/2014 à 17h00	0,5 Bq/m3
Ecart le plus important le 09/03/2014	Ecart de 16,4 Bq/m3
Ecart le plus faible le 05/03/2014	Ecart de 0,5 Bq/m3
Moyenne mensuelle	5 Bq/m3

⁹ Ce graphe présente pour chaque jour l'activité volumique horaire maximale, l'activité volumique horaire minimale et la moyenne journalière des activités volumiques horaires.

2.2.4 Commentaires


Aucune anomalie particulière n'a été mesurée. Les concentrations en radon sont normales pour la vallée du Rhône et la saison.

Les données mensuelles peuvent être comparées au tableau ci-dessous qui synthétise les résultats de l'année 2012 pour la balise atmosphérique de Péage-de-Roussillon.

PEAGE DE ROU.	Minima	Moyennes	Maxima
janv-12	0,6	5,6	19,7
févr-12	0,7	4,9	17,9
mars-12	0,3	5,1	26,1
avr-12	0,4	2,6	15,3
mai-12	0,5	3,2	13,9
juin-12	0,6	3,0	12,5
juil-12	0,7	4,5	24,4
août-12	0,9	6,4	26,8
sept-12	0,5	6,4	33,2
oct-12	0,8	7,8	26,5
nov-12	0,4	6,1	22,4
déc-12	0,7	4,7	16,8
2012	0,3	5,0	33,2

Activités volumiques du canal « radon » mesurées en 2012 (résultats en Bq/m³)

ANNEXE: PRINCIPE DE FONCTIONNEMENT DE LA BALISE

- 1. L'air extérieur est aspiré par une pompe à un débit nominal de 25 m³/heure.
- 2. Il passe à travers un filtre déroulant qui retient les particules en suspension dans l'air. Un double détecteur à scintillation (plastique et sulfure de zinc), disposé en regard du filtre (D), mesure en continu les rayonnements alpha et bêta émis par les poussières atmosphériques. Le système de détection permet de différencier la radioactivité artificielle (seuil de détection : 1 Bq/m³) de la radioactivité naturelle.
- 3. L'air est ensuite canalisé vers la cartouche à charbon actif (C) où un détecteur spécifique de type Nal(I) mesure le rayonnement gamma dans une fenêtre comprise entre 291 et 437 keV centrée sur le principal pic de l'iode 131 (364,5 keV).
- 4. L'air est rejeté à l'extérieur.
- 5. Cinq jours après la mesure directe, le filtre passe sous un autre détecteur (R) qui effectue une seconde mesure du rayonnement bêta, dite mesure retardée, avec un niveau de détection plus bas (0,01 Bq/m³), la radioactivité naturelle (descendants à vie courte du radon 222) ayant pratiquement disparu.

Systématiquement... et en cas d'alerte

L'analyse complémentaire du filtre en spectrométrie gamma au laboratoire de la CRIIRAD permet d'identifier et de quantifier précisément les éléments radioactifs qui y sont déposés.

LABORATOIRE CRIIRAD

Le laboratoire de la CRIIRAD est un laboratoire d'analyse spécialisé dans les mesures de radioactivité et agréé par l'Autorité de Sûreté Nucléaire (ASN) pour les mesures de radioactivité de l'environnement et les contrôles radon. Il est placé sous la responsabilité de M. Bruno CHAREYRON, ingénieur en physique nucléaire.

Le laboratoire comprend notamment un service dédié à la gestion des réseaux de balises de contrôle en continu de la radioactivité dans l'environnement. Sept scientifiques et techniciens assurent le fonctionnement de ce service.

RESPONSABLE DU SERVICE DE GESTION DES BALISES

Jérémie MOTTE

RESPONSABLE SCIENTIFIQUE
Bruno CHAREYRON

RESPONSABLE TECHNIQUE
Christian COURBON

RESPONSABLE CONTROLE QUALITE

Julien SYREN

INTERVENTIONS HEBDOMADAIRES,
ANALYSES

Stéphane PATRIGEON

SCRUTATION DES DONNEES
Stéphane MONCHÂTRE

PREPARATION DES ECHANTILLONS

Jocelyne RIBOUËT

EQUIPE D'ASTREINTE

Bruno CHAREYRON, Christian COURBON, Stéphane PATRIGEON, Julien SYREN, Jérémie MOTTE, Corinne CASTANIER et Roland DESBORDES (respectivement responsable recherche et président de la CRIIRAD)